The article below by Schmid and Kuster is The GameChanger, with far reaching consequences and impact on future research. At least it should be.

Here are a few quotes from this gamechanging paper by Schmid and Kuster:

  • In the majority of published in vitro studies, the applied avgSARculture values chosen for RF exposure levels were on the order of 2 W/kg or less
  • The SAR level of 2 W/kg is widely known as the basic limit for localized exposure defined by widely adopted guidelines of the International Commission for Non-Ionizing Radiation Protection [ICNIRP, 1998] and, as such, is often used by design and/or requested by funding agencies as maximum in vitro exposure level” [bold text DL]
  • Another rationale for the use of avgSARculture values of 2 W/kg or less is to ensure RF induced temperature increase in cell culture is below 0.1 8C that may cause thermally induced biological effects
  • In the context of in vitro evaluations, it is rarely discussed that exposure levels occurring locally at cell layers close to the skin or at interfaces of materials with largely different dielectric constants can be significantly higher than the psSAR10g for which 2 W/kg (general public) and 10 W/kg (occupational exposure) are the widely adopted limit values for compliance with safety guidelines” [bold text DL]
  • Kuster and Schönborn [2000] have suggested that, for in vitro experiments to adequately assess health risks associated with the use of wireless communication technologies, exposure levels applied must be considerably higher or at least equal to the maximum values locally induced in vivo in a user’s tissues.” [bold text DL]
  • The reported maximum exposure levels engendered by modern mobile phones held against the ear or body may approach the psSAR10g limit of 2 W/kg, which raises the important question of whether the avgSARculture levels applied during in vitro experiments, particularly those with cell types found in peripheral tissues (blood cells, keratinocytes, fibroblasts, etc.), are sufficiently high enough to represent realistic maximum mobile phone exposure.”
  • In general, it can be seen clearly that peak local SAR in skin and blood is substantially higher than 2 W/kg in all cases, which is reasonable when the relatively wide depth of averaging in computation of the 10 g average
  • For irradiation of the TLMVT with the phone model, peak local SAR values at 900 and 1800 MHz of 12.4 and 30.7 W/kg, respectively, in the main blood vessel and 7.3 and 17.1 W/kg, respectively, in the skin were obtained.” [bold text DL]
  • local SAR, particularly in superficial tissues, is substantially above 2 W/kg, even though the mobile phone model meets the psSAR10g basic restriction for compliance testing.” [bold text DL]
  • This means that substantial volumes of cells contained in the skin (e.g., fibroblasts and keratinocytes) and the blood (e.g., lymphocytes and leukocytes) may experience significantly higher SAR during phone calls under realistic worst-case conditions than has been tested in most of the in vitro studies carried out so far.”
  • Our results show that exposure levels used in most in vitro studies published so far concerning possible adverse effects of exposure from GSM mobile phones are too low to be meaningful in the context of the peak local tissue exposure expected under conservative conditions during mobile phone use operating in the frequency bands 900 and 1800 MHz, in particular for cells contained in superficial tissues as skin and blood.”
  • This limitation of in vitro studies could be overcome by including avgSARculture levels that extend to higher than 20 W/kg, which, however, would require additional control experiments to probe the effect of RF-induced temperature increases, that is, >0.1 8C versus effects of non-RF induced temperature increases.”
  • Our purpose in writing this paper is to quantify discrepancies between SAR levels applied during in vitro experiments and actual SAR levels observed in vivo, an issue we have raised on several occasions. We encourage all researchers working in this area to discuss these findings in future reviews. In future calls for research and recommendations of funding agencies, we strongly recommend the addition of exposure levels well above 2 W/kg for experiments intended for use in the context of risk assessments.” [bold text DL]

There seems to be a lot of experimental work that needs to be re-done. It is a pity that it took such a long time to make this issue clear. However, it is out in open now. As saying says: “better later than never”.

Game Changing publication: The discrepancy between maximum in vitro exposure levels and realistic conservative exposure levels of mobile phones operating at 900/1800 MHz.

Leave a Reply

Your email address will not be published. Required fields are marked *