A Greek scientific study led by Adamantia Fragopoulou and Lukas Margaritis has demonstrated important protein changes in the brain of animals following whole body exposure to RF electromagnetic fields, similar to the kind of microwave radiation emitted from cell phones, portable phones, WiFi and wireless computer equipment. The study, Brain proteome response following whole body exposure of mice to mobile phone or wireless DECT base radiation”, was published in Electromagnetic Biology and Medicine, Early Online: 1–25, 2012 (See Abstract, below).

Important regions of the brain necessary for learning, memory and other functions of the mammalian brain were impacted by the microwave radiation, including the hippocampus, cerebellum and frontal lobe, at exposures below the ICNIRP (International Commission on Non-Ionizing Radiation Protection) safety guidelines.  A total of 143 proteins in the brain were impacted by the RF radiation over a period of 8 months, providing new evidence for a potential relationship between everyday cell phone use, wireless transmitters and wireless computer equipment and electrosensitivity symptoms, such as headaches, dizziness and sleep disorders, as well as with tumors, Alzheimer’s and even metabolic effects.

The study simulated 3 hours of cell phone exposure over eight months, 8 hours of DECT portable phone exposure over eight months, and included a sham exposure control group. The results showed both down regulation and up regulation of the proteins.

Several neural function related proteins (i.e. Glial Fibrillary Acidic Protein (GFAP), Alpha-synuclein, Glia Maturation Factor beta (GMF), and apolipoprotein E (apoE)), heat shock proteins, and cytoskeletal proteins (i.e. neurofilaments and tropomodulin), were shown to be impacted by the radiation, as well as proteins of the brain metabolism (i.e. Aspartate aminotransferase, Glutamate dehydrogenase), in nearly all of the brain regions studied.

Figure 2 from the study shows the 143 proteins that have changed (up- or down-regulated) and their functional relationship based on a literature survey.

Adamantia F. Fragopoulou, M.Sc., PhD Candidate, in the Dept of Cell Biology and Biophysics at University of Athens, Greece, lead author of the study, says,

“Our study is important because it shows for the first time protein changes in the mouse brain after EMF exposure and in particular in very crucial regions like hippocampus, cerebellum and frontal lobe, all involved in learning, memory and other complicated functions of the mammalian brain. We have demonstrated that 143 proteins are altered after electromagnetic radiation, including proteins that have been correlated so far with Alzheimer’s, glioblastoma, stress and metabolism. In its perspective, this study is anticipated to throw light in the understanding of such health effects like headaches, dizziness, sleep disorders, memory disorders, brain tumors, all of them related, to the function of the altered brain proteins.

“Until now there is limited evidence relating EMFs with the impact on specific brain proteins. Further analysis of the affected proteins as well as replicating the experiment under similar conditions (data presently under analysis) is expected to offer new insights explaining the overall effects.”

Lukas H. Margaritis, PhD, Professor Emeritus (as of Sept 2010) of Cell Biology and Radiobiology, Dept of Cell Biology and Biophysics, University of Athens, head of the Athens research group, says,

“A high throughput approach (mass characterization of biomolecules, similar to microarrays that analyze the total genes of an organism) as that of the Proteomics* has never been used so far in EMF research of BRAIN TISSUES following whole body exposure of model animals (mice) at SAR values below ICNIRP’s recommendations. It is also the first time that wireless DECT phones base radiation is involved in lab animal studies and specifically in such molecular effects. The message taken out of this work is that people should be very cautious when using mobile phones next to their body (especially next to their brain), whereas the wireless DECT should be located as far away as possible from places that people use to spend many hours a day, not to mention children of all ages.”

* Proteomics is the study of the structure and function of proteins. Proteins are the primary components of the physiological metabolic pathways of all cells. They influence the functioning of all bodily systems, such as the immune system, endocrine system, neurological system (including cognitive function), respiratory system, etc. Malfunction in protein integrity has been linked to hereditary diseases, nervous system disorders, diabetes, to name just a few cases. Proteins are responsible for energy production and information transfer, in fact modern CELL BIOLOGY considers that there is no single cellular function that is not mediated by proteins.

The study by Fragopoulou et al. suggests immediate follow up on these findings are warranted, as changes in molecular effects in the brain can raise questions about what the effects would be on the brain after much longer durations of exposure to RF radiation, as is common today from frequent cell phone use and wireless exposures, as well as the effect of cumulative exposures on the brain and mental functioning; immune system defects; fatigue; chronic sleep disorders; and effects on fetuses and sperm quality. The research extends our understanding from the Volkow et al. study (JAMA. 2011;305(8):808-813. doi: 10.1001/jama.2011.186), which demonstrated impacts of cell phone radiation exposure on brain glucose metabolism, without understanding the mechanisms of action. The Fragopoulou et al. study presents a plausible theory why glucose metabolism in the brain may become altered, possibly through an oxidative stress effect.

Special Concern for Children

Regarding the implications of the Greek findings for the learning capability of children in formative years, the authors say,

“The evidence for disregulation of proteins in the brain from whole body exposure to RF/MW radiation, such as the radiation emitted by cell phones, portable phones, wireless devices or ambient RF/MW from cell towers, whether proteins are upregulated or downregulated, is of great concern for its impact on children’s capacity to learn. “

When considered together with other studies published by the University of Athens team (Fragopoulou et al., 2010, on spatial memory disorder, and Ntzouni et al., 2011 on recognition memory disorders, the authors say, “This proteome study implies that mobile phone radiation exposure at a normal intensity (and even below ICNIRP’s guidelines) is capable of detuning learning/memory functions and possibly other brain functions important in person-to-person communication and understanding. The impacts on society are unpredictable as EMFs are not a drug that is delivered to specific body parts or functions. EMFs can attack through oxidative stress every single cell that receives enough energy at non-thermal levels. The potential consequences for learning, memory and interpersonal relations, at the very least, need society’s immediate attention, given the widespread exposure to microwave radiation across the globe.”

People exposed to microwave radiation from cell phones, wireless networks and citywide Wi-Fi have long complained of cognitive difficulties ranging from attention problems, difficulty focusing, poor memory, visual and hearing disruptions, headaches, dizziness, depression and foggy thinking. The Fragopoulou et al. study deepens scientists’ understanding of the mechanisms of action of microwave radiation’s effect on the brain, and on mental functioning, due to changes in proteins and in protein functioning .

Dr. Martin Blank, Associate Professor, Department of Physiology and Cellular Biophysics, Columbia University, and Past President of the Bioelectromagnetics Society, says,

“The paper by Goodman and Henderson (1987) showed that short-term  (minutes) exposure to EMF will stimulate protein synthesis, and  Fragopoulou et al. now show that this can lead to important changes in brain composition and function.  Such changes may account for symptoms  like insomnia, nervousness, fatigue, headaches, etc. that people  report after exposure to cell phones and other wireless technologies.  The biological verdict became obvious when Goodman and Blank (1994)  showed that cells react to EMF as potentially harmful by activating the cellular stress response.  There is no question that we should limit our exposure to EMF to help protect our brains and all cells in the body.”

more: http://electromagnetichealth.org/electromagnetic-health-blog/mice-proteome/

study: http://www.ncbi.nlm.nih.gov/pubmed/22263702


Brain proteome response following whole body exposure of mice to mobile phone or wireless DECT base radiation

Leave a Reply

Your email address will not be published. Required fields are marked *